
5-Week Training Plan: Service Mesh, Kubernetes, and Related Technologies

Week 1: Fundamentals and Kubernetes
Day 1-2: Kubernetes Basics and Local Development Environments

Kubernetes Architecture and Core Concepts
Control Plane Components

Node Components

Core Concepts

Additional Components

Local Kubernetes Development Options
kind (Kubernetes in Docker)

Installation

Creating a cluster

Minikube
Installation

Starting a cluster

Practice with Basic Kubernetes Resources

Day 3-4: Advanced Kubernetes
ConfigMaps, Secrets, and Volumes

ConfigMaps

Secrets

Volumes

Kubernetes Networking and Ingress
Networking Model

Services

Ingress

Kubernetes RBAC and Security Concepts
Role-Based Access Control (RBAC)

Security Contexts

Network Policies

Day 5: Working with local K8s options
Docker Images in kind

Building a custom Docker image

Loading the image into kind cluster

Limitations and workarounds for Docker-in-Docker scenarios

Creating deployments with custom images

Working with Images in Minikube
Using the Host Docker Daemon

Loading Images into Minikube

Creating Deployments with Custom Images

Minikube-Specific Features
Built-in Docker Registry

Direct Image Building

Monitoring and Troubleshooting

Cleaning Up

Best Practices

Week 2: Service Mesh Concepts and Python
Day 1-2: Service Mesh

Fundamentals

Core concepts of service mesh

Problems service meshes solve

Evolution of ingress

Service Mesh Architecture
Data Plane

Control Plane

Key Features and Use Cases
Service Discovery and Load Balancing

Traffic Management

Observability

Security

Challenges and Best Practices

Performance Considerations

Complexity Management

Monitoring and Troubleshooting

Day 3-4: Python for Kubernetes
Python basics review (if needed)

Data Types

Python Package Management
Installing a package:

Upgrading a package:

Python Virtual Environments
Creating a virtual environment:

Activating a virtual environment:On Unix or MacOS:

Installing packages in a virtual environment:

Deactivating a virtual environment:

Creating a requirements file:

Installing from a requirements file:

Kubernetes Python client library

Simple Python scripts for Kubernetes interaction

Day 5: Helm Basics
Helm's Purpose and Architecture

Creating and Structure of a Helm Chart

Deploying Applications with Helm

Advanced Helm Concepts
Hooks

Dependencies

Templating

Creating Helm Charts with Python Templates
Using Jinja2 for Templating

Generating Kubernetes Manifests Dynamically

Integrating with CI/CD Pipelines

Week 3: Istio Deep Dive
Day 1: Istio Basics

Installing Istio on your Kubernetes cluster
Download Istio

Install Istio

Enable automatic sidecar injection

Istio's architecture and core components
Control Plane

Data Plane

Addons

Day 2: Istio Traffic Management
Exploring Istio's traffic management features

Implementing canary deployments and A/B testing

Istio's load balancing and circuit breaking capabilities

Day 3: Istio Security and Observability
Istio's security features

mTLS (Mutual TLS)

Authorization Policies

Exploring Istio's observability stack
Prometheus

Grafana

Kiali

Jaeger/Zipkin

Day 4-5: Deploying a Sample Application with Istio
Objective

Prerequisites

Enable Istio Sidecar Injection

Deploy a Sample Application

Create a Virtual Service

Create a Destination Rule

Test the Routing

Implement Canary Deployment

observability

Week 4: Linkerd and Practical Applications
Day 1: Linkerd Basics

Installing Linkerd on your Kubernetes cluster
Install CLI

Install Linkerd on Your Minikube Cluster

Validate cluster

Install Linkerd

Install viz

Linkerd's architecture and core components

Control Plane

Data Plane

Add-ons

Linkerd Features

Traffic management capabilities

Linkerd's observability and security features

Day 2-4: Hands-on Exercise
Deploying and Managing emojivoto with Linkerd

Deploy the emojivoto sample application

Inject Linkerd into the application

Observe traffic
Install smi

Visualize the service mesh

Implement a traffic split for canary deployment

Observe the traffic split

Gradually increase traffic to the new version

Monitor the canary deployment

Day 5: Service Mesh Comparison
Comparing Istio, Linkerd, and other service mesh solutions

Istio

Linkerd

Consul Connect

NGINX Service Mesh

When to choose one service mesh over another

Week 5: Practical Project
Designing and implementing a microservices application

Deploying the application using Helm

Implementing service mesh features

Creating Python scripts for automation

Additional Resources and Best Practices

Tips for Successful Service Mesh Adoption

Tools

This document is meant to be a central spring point to allow you to understand points to cover yet expects the user to use external

resources to dig deeper in the points and subjests

Week 1: Fundamentals and Kubernetes

Day 1-2: Kubernetes Basics and Local Development Environments

Kubernetes Architecture and Core Concepts

Kubernetes is a powerful container orchestration platform that manages containerized applications across multiple hosts. Its

architecture consists of two main components: the control plane and worker nodes

source k8s.

Control Plane Components

1. kube-apiserver: The API server is the front-end for the Kubernetes control plane. It exposes the Kubernetes API and handles all

administrative operations.

2. etcd: A consistent and highly-available key-value store used as Kubernetes' backing store for all cluster data.

3. kube-scheduler: Responsible for assigning newly created pods to nodes based on resource requirements, hardware/software/policy

constraints, affinity and anti-affinity specifications, and more.

4. kube-controller-manager: Runs controller processes that regulate the state of the system. These controllers include the node controller,

replication controller, endpoints controller, and service account & token controllers.

5. cloud-controller-manager: (Optional) Integrates with underlying cloud providers.

1 +---------------------+ +---------------------+

2 | Control Plane | | Worker Nodes |

3 | | | |

4 | +---------------+ | | +---------------+ |

5 | | kube-apiserver| | | | kubelet | |

6 | +---------------+ | | +---------------+ |

7 | | etcd | | | | kube-proxy | |

8 | +---------------+ | | +---------------+ |

9 | | scheduler | | | | Container | |

10 | +---------------+ | | | Runtime | |

11 | | controller | | | +---------------+ |

12 | | manager | | | |

13 | +---------------+ | | (Multiple nodes) |

14 +---------------------+ +---------------------+

1 +---+

https://kubernetes.io/docs/concepts/architecture/

Node Components

1. kubelet: An agent that runs on each node, ensuring containers are running in a Pod.

2. kube-proxy: Maintains network rules on nodes, implementing part of the Kubernetes Service concept.

3. Container runtime: Software responsible for running containers (e.g., Docker, containerd, CRI-O).

4. Pods: The smallest deployable units in Kubernetes, consisting of one or more containers

Core Concepts

1. Pods: The smallest deployable units in Kubernetes, consisting of one or more containers.

2. Services: An abstraction that defines a logical set of Pods and a policy by which to access them.

3. Deployments: Provide declarative updates for Pods and ReplicaSets.

4. Namespaces: Virtual clusters backed by the same physical cluster, providing a way to divide cluster resources between multiple users.

Additional Components

These components include the Dashboard (a web-based UI), cluster-level logging, container resource monitoring, and network plugins.

2 | Control Plane |

3 | |

4 | +----------------+ +---------------------------+ |

5 | | kube-apiserver | | scheduler | |

6 | | (API Gateway) | | (Assigns Pods to Nodes) | |

7 | +----------------+ +---------------------------+ |

8 | |

9 | +----------------+ +---------------------------+ |

10 | | etcd | | controller manager | |

11 | | (Cluster State | | (Maintains Desired State) | |

12 | | Database) | | | |

13 | +----------------+ +---------------------------+ |

14 +---+

1 +--+

2 | Worker Node |

3 | +---------------------+ +---------------------+ |

4 | | kubelet | | kube-proxy | |

5 | | (Node Agent) | | (Network Proxy) | |

6 | +---------------------+ +---------------------+ |

7 | |

8 | +--+ |

9 | | Container Runtime | |

10 | | (e.g., Docker, containerd) | |

11 | +--+ |

12 | |

13 | +--+ |

14 | | Pods | |

15 | | +------------+ +------------+ +------------+ | |

16 | | | Container | | Container | | Container | | |

17 | | +------------+ +------------+ +------------+ | |

18 | +--+ |

19 +--+

1 +--+

2 | Additional Components |

3 | |

4 | +---------------------+ +-------------------------+ |

5 | | Dashboard | | Cluster-level Logging | |

Local Kubernetes Development Options

kind (Kubernetes in Docker)

kind is a tool for running local Kubernetes clusters using Docker container "nodes". It's designed for testing Kubernetes itself, but can be

used for local development or CI.
Installation

go install sigs.k8s.io/kind@v0.24.0

Or for macOS users

brew install kind

Creating a cluster

kind create cluster

Advantages of kind:

1. Lightweight and fast to start up, making it ideal for rapid development cycles.

2. Supports multi-node clusters, allowing you to simulate more complex environments.

3. Runs Kubernetes inside Docker containers, which is efficient and consistent across different host systems.

4. Ideal for testing and CI/CD pipelines due to its speed and reproducibility

Minikube

Minikube is a tool that makes it easy to run Kubernetes locally. It runs a single-node Kubernetes cluster inside a VM on your laptop.
Installation

For macOS

brew install minikube

For other systems, refer to the official documentation
Starting a cluster

minikube start

Advantages of Minikube:

1. More established and feature-rich, with a large community and extensive documentation.

2. Supports multiple hypervisors (VirtualBox, HyperKit, etc.), allowing flexibility in your local setup.

3. Provides built-in addons for common services, making it easy to enable additional functionality.

4. Offers a dashboard for visual management of your cluster.

Practice with Basic Kubernetes Resources

To solidify your understanding, practice creating and managing these basic Kubernetes resources in both kind and Minikube

environments:

1. Pods: The smallest deployable units in Kubernetes.

2. Deployments: Manage the deployment and scaling of a set of Pods.

3. Services: Expose your application to network traffic.

Example commands:

Create a deployment

6 | | (Web UI) | |(Centralized Log Storage)| |

7 | +---------------------+ +-------------------------+ |

8 | |

9 | +---------------------+ +-------------------------+ |

10 | | Monitoring | | Network Plugins | |

11 | |(Resource Monitoring)| | (Implement CNI) | |

12 | +---------------------+ +-------------------------+ |

13 +--+

kubectl create deployment nginx --image=nginx

Expose the deployment as a service

kubectl expose deployment nginx --port=80 --type=LoadBalancer

List pods

kubectl get pods

List services

kubectl get services

By thoroughly understanding these concepts and practicing with both kind and Minikube, you'll build a solid foundation for working with

Kubernetes in various environments.

You will need to search so that you can view the nginx on your localhost

eg: minikube external ip expose command

You will ultimately see the nginx default banner

Day 3-4: Advanced Kubernetes

ConfigMaps, Secrets, and Volumes

1 +---+

2 | Pod |

3 | |

4 | +----------------+ +---------------------------+ |

5 | | Container | | Volume Mounts | |

6 | | (Application) | | /etc/config -> ConfigMap | |

7 | | | | /etc/secrets -> Secret | |

8 | +----------------+ +---------------------------+ |

9 | |

10 | +----------------+ +---------------------------+ |

11 | | Environment | | ConfigMap | |

12 | | Variables | | | |

13 | | (from ConfigMap| | key1: value1 | |

14 | | and Secret) | | key2: value2 | |

15 | +----------------+ +---------------------------+ |

16 | |

17 | +---------------------------+ |

18 | | Secret | |

19 | | username: base64(user) | |

20 | | password: base64(pass) | |

21 | +---------------------------+ |

22 +---+

ConfigMaps

ConfigMaps

Used to store non-confidential data in key-value pairs.

Can be consumed as environment variables, command-line arguments, or configuration files in a volume.

Example creation:

kubectl create configmap name --from-literal=name='{"first": "John", "second": "Doe"}'

Example extract

kubectl get configmap name -o jsonpath='{.dataname}' or kubectl get configmap name3 -o json | jq -r '.data.name'|

jq -r .first

Secrets

Managing Secrets using kubectl

Similar to ConfigMaps but intended for confidential data.

Base64 encoded by default (not encrypted).

Can be mounted as files or exposed as environment variables.

Example creation:

kubectl create secret generic user-pass --from-literal=username=john --from-literal=password=s3cr3t

Example extract:

kubectl get secrets user-pass -o json | jq -r .data.password | base64 -D

Volumes

Volumes

Provide persistent storage for pods.

Types include emptyDir, hostPath, nfs, and cloud provider-specific options.

PersistentVolumes (PV) and PersistentVolumeClaims (PVC) provide a way to use storage resources in a pod-independent manner.

Example

Create a configmap to hold your var

kubectl create configmap config-vol --from-literal=log_level=debug

Now create a pod with a running container that mounts the configmap as a var

Run a command to extract the var held at this point

1 cat <<EOF | k apply -f -

2 apiVersion: v1

3 kind: Pod

4 metadata:

5 name: configmap-pod

6 spec:

7 containers:

8 - name: test

9 image: busybox:1.28

10 command: ['sh', '-c', 'echo "The app is running!" && tail -f /dev/null']

11 volumeMounts:

12 - name: config-vol

13 mountPath: /etc/config

14 volumes:

15 - name: config-vol

16 configMap:

17 name: config-vol # Corrected to match the ConfigMap name

18 items:

19 - key: log_level

20 path: log_level

21 EOF

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

kubectl exec -it configmap-pod -- cat /etc/config/log_level

OR

Exec into the container

kubectl exec -it configmap-pod -- sh

Here you can navigate to the location

cd etc/config

ls < here you should see log_level

cat log_level

debug/etc/config

To give a cleave output

cat log_level ; echo

This could easily be a static volume location as opposed to a configmap

Kubernetes Networking and Ingress

Networking is a large area of K8s and is the largest challenge or concept to learn.

1 +--+

2 | Node |

3 | +--------------------+ +----------------------+ |

4 | | Pod | | Persistent Volume | |

5 | | +--------------+ | | | |

6 | | | Container | | | (Network File Ststem,| |

7 | | | /Volume Mount| | | Cloud Storage, etc. | |

8 | | +--------------+ | | | |

9 | +--------------------+ +----------------------+ |

10 | |

11 | +--------------------+ +----------------------+ |

12 | | Empty Dir Volume | | Host Path Volume | |

13 | |(Temporary Storage) | | (Node's file system) | |

14 | +--------------------+ +----------------------+ |

15 | |

16 +--+

1 External Traffic

2 |

3 v

4 +-----------------------+

5 | Load Balancer |

6 +-----------------------+

7 |

8 v

9 +-------------------------+

10 | Ingress Controller |

11 | (e.g., NGINX, Traefik) |

12 +-------------------------+

13 | |

14 v v

15 +----------------+ +----------------+

16 | Ingress Rule 1 | | Ingress Rule 2 |

17 | host: foo.com | | host: bar.com |

18 | path: /app1 | | path: /app2 |

19 +----------------+ +----------------+

20 | |

21 v v

22 +----------------------+ +----------------------+

This diagram illustrates:

1. External traffic enters through a Load Balancer.

2. The Ingress Controller (e.g., NGINX or Traefik) receives the traffic and processes it based on Ingress Rules.

3. Ingress Rules define how traffic should be routed based on hostnames and paths.

4. Services (ClusterIP or NodePort) receive traffic from the Ingress Controller and distribute it to Pods.

5. Pods contain the application containers and are distributed across nodes.

6. The Container Network (implemented by CNI plugins like Flannel, Calico, Weave, or Cilium) enables communication between Pods

across nodes.

7. The Node Network connects all nodes in the cluster.

Networking Model

Pod IP Addressing: Each pod is assigned a unique IP address from the cluster-wide CIDR range. This ensures that every pod has a

distinct identity within the cluster.

Direct Communication: Pods can communicate directly with each other using their assigned IP addresses, without the need for Network

Address Translation (NAT) or port mapping.

Intra-Node Communication: For pods on the same node, communication occurs through a virtual ethernet bridge. This allows for efficient

local traffic routing.

Inter-Node Communication: When pods on different nodes need to communicate, the cluster-level network layer handles routing based

on the pod IP ranges assigned to each node.

23 | Service 1 | | Service 2 |

24 | (ClusterIP/NodePort) | | (ClusterIP/NodePort) |

25 +----------------------+ +----------------------+

26 | | | |

27 v v v v

28 +--------+ +--------+ +--------+ +--------+

29 | Pod 1A | | Pod 1B | | Pod 2A | | Pod 2B |

30 +--------+ +--------+ +--------+ +--------+

31 | | | |

32 v v v v

33 +--+

34 | Container Network |

35 | (e.g., Flannel, Calico, Weave, Cilium) |

36 +--+

37 |

38 v

39 +----------------+

40 | Node Network |

41 +----------------+

1 +-------------------------------------+ +-------------------------------------+

2 | Node 1 | | Node 2 |

3 | +--------------+ +--------------+ | | +--------------+ +--------------+ |

4 | | Pod1 | | Pod2 | | | | Pod3 | | Pod4 | |

5 | | IP: 10.1.1 | | IP: 10.1.2 | | | | IP: 10.2.1 | | IP: 10.2.2 | |

6 | +--------------+ +--------------+ | | +--------------+ +--------------+ |

7 | | | | | |

8 | Virtual Ethernet Bridge | | Virtual Ethernet Bridge |

9 | | | | | |

10 +------------------|------------------+ +------------------|------------------+

11 | |

12 | Cluster Network Fabric |

13 +--+

14

CNI Plugins: Container Network Interface (CNI) plugins implement the actual networking, ensuring proper routing and connectivity

across the cluster. Popular CNI plugins include Calico, Flannel, and Weave.

This architecture simplifies application design and deployment, as pods can be treated similarly to VMs or physical hosts from a networking

perspective.

Services

Kubernetes Services provide a stable network endpoint for a set of Pods, enabling reliable communication within the cluster. Services

abstract the underlying Pod network, offering a consistent way to access applications regardless of Pod lifecycle changes. Key aspects of

Kubernetes Services include:

Service Types:

ClusterIP (default): Exposes the service on an internal IP in the cluster

NodePort: Exposes the service on each node's IP at a static port

LoadBalancer: Exposes the service externally using a cloud provider's load balancer

ExternalName: Maps the service to the contents of the externalName field

Headless: Allows direct access to individual pod IPs

Service Discovery: Services can be discovered through DNS or environment variables, making it easy for applications to find and

communicate with each other.

Load Balancing: Services automatically distribute incoming traffic across all backend pods, ensuring even load distribution.

Stable Endpoints: Services provide stable IP addresses and DNS names for groups of pods, abstracting away the dynamic nature of pod

lifecycles.

Cloud Integration: Services can integrate with cloud provider load balancers for external access, simplifying the process of exposing

applications to the internet.

Services play a crucial role in microservices architectures, facilitating seamless communication between application components and

enabling scalability and resilience in Kubernetes environments

Ingress

1 +-------------------------+

2 | Service |

3 | (ClusterIP/NodePort) |

4 | IP: 10.0.0.1 |

5 +-------------------------+

6 |

7 Load Balancing

8 |

9 +---------+----------+

10 | | |

11 +-----------+ | +-----------+

12 | Pod 1 | | | Pod 2 |

13 | IP:10.1 | | | IP:10.2 |

14 +-----------+ | +-----------+

15 |

16 +-----------+

17 | Pod 3 |

18 | IP:10.3 |

19 +-----------+

20

1 External Traffic

2 |

3 +------v------+

Kubernetes Ingress is an API object that manages external access to services within a cluster, providing HTTP and HTTPS routing rules. It

acts as a single entry point for incoming traffic, simplifying the exposure of multiple services through a unified interface. Key features of

Ingress include:

Traffic Routing: Ingress can route traffic based on URL paths, hostnames, or other criteria, allowing for complex routing scenarios.

SSL/TLS Termination: Ingress can handle SSL/TLS termination, offloading this responsibility from individual services.

Load Balancing: Ingress can distribute traffic across multiple backend services, acting as a load balancer.

Name-based Virtual Hosting: Ingress supports routing to different services based on the hostname, enabling multiple applications to

share a single IP address.

Ingress Controller: Ingress requires an Ingress Controller to function, which implements the actual routing and load balancing logic.

Popular Ingress Controllers include NGINX, Traefik, and Istio.

By consolidating routing rules into a single resource, Ingress simplifies network management and reduces the need for multiple load

balancers, making it an essential component for production-ready Kubernetes deployments.

Examples:

Create a simple web application

4 | Ingress |

5 | Controller |

6 +------+------+

7 |

8 +------v------+

9 | Ingress |

10 | Rules |

11 +------+------+

12 |

13 +------v------+

14 | Services |

15 +------+------+

16 |

17 +----v----+

18 | Pods |

19 +---------+

20

1 cat <<EOF | k apply -f -

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: web-app

6 spec:

7 replicas: 2

8 selector:

9 matchLabels:

10 app: web-app

11 template:

12 metadata:

13 labels:

14 app: web-app

15 spec:

16 containers:

17 - name: web-app

18 image: nginx:latest

19 ports:

20 - containerPort: 80

21 ---

22 apiVersion: v1

This will create an app named web-app with a port 80 exposure to the pod.

It will also create a service directing calls to the deployment named web-app on port 80 to port 80 of one of the containers.

kubectl get deployments

kubectl get pods

kubectl get services

giving something like

Now create an ingress to create access

This will create an ingress that will create a connection outside of the cluster with web-app.info as the host name that will direct all

connections to port 80 of web-app-service service that will then forward this to port 80 of the deployment for forwarding to one of the replicas

23 kind: Service

24 metadata:

25 name: web-app-service

26 spec:

27 selector:

28 app: web-app

29 ports:

30 - protocol: TCP

31 port: 80

32 targetPort: 80

33

34 EOF

1 NAME READY UP-TO-DATE AVAILABLE AGE

2 web-app 2/2 2 2 46s

3

4 NAME READY STATUS RESTARTS AGE

5 web-app-6fdf6bcdd6-cfkjk 1/1 Running 0 42s

6 web-app-6fdf6bcdd6-nxv7f 1/1 Running 0 42s

7

8 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

9 kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 57s

10 web-app-service ClusterIP 10.110.70.144 <none> 80/TCP 46s

1 cat <<EOF | k apply -f -

2 apiVersion: networking.k8s.io/v1

3 kind: Ingress

4 metadata:

5 name: web-app-ingress

6 annotations:

7 nginx.ingress.kubernetes.io/rewrite-target: /$1

8 spec:

9 rules:

10 - host: web-app.info

11 http:

12 paths:

13 - path: /

14 pathType: Prefix

15 backend:

16 service:

17 name: web-app-service

18 port:

19 number: 80

20 EOF

for connection.

kubectl get ingress

NAME CLASS HOSTS ADDRESS PORTS AGE

web-app-ingress <none> http://web-app.info 80 2m28s

Ensure that the Ingress addon is enabled in Minikube.

minikube addons enable ingress

This command enables the NGINX Ingress Controller in your Minikube cluster.

Obtain the IP address of your Minikube cluster.

minikube ip

This will return the IP address of your Minikube cluster.

Add an entry to your hosts file for web-app.info to the Minikube IP.

This step is necessary because you've specified web-app.info as the host in your Ingress resource.

Now you should be able to access your application by opening a web browser and navigating to: http://web-app.info

If everything is set up correctly, you should see the NGINX welcome page.

If you're unable to access the application, try the following:

Check Ingress status kubectl get ingress , ensure that the ADDRESS field is populated with an IP address.

Verify ingress kubectl get pods -n ingress-nginx , make sure the Ingress Controller pod is running.

Check ingress logs looking for ERRORS kubectl logs -n ingress-nginx $(kubectl get pods -n ingress-nginx -o name) (this can

be run in seperate parts kubectl get pods -n ingress-nginx -o name then run kubectl logs -n ingress-nginx with the ingress)

Last resort you can try port forwarding. kubectl port-forward svc/web-app-service 8080:80 , now access the application at

http://localhost:8080 .

Remember that Minikube is running inside a VM, so network access can sometimes be tricky depending on your setup. The methods

described above should work in most cases, but you might need to adjust based on your specific environment

Kubernetes RBAC and Security Concepts

1 echo "$(minikube ip) web-app.info" | sudo tee -a /etc/hosts

1 +---+

2 | Kubernetes Cluster |

3 | |

4 | +-----------------------+ +--------------------------+ |

5 | | RBAC Objects | | Security Contexts | |

6 | | +---------------+ | | +--------------------+ | |

7 | | | Roles | | | | Pod Security | | |

8 | | | (Namespaced) | | | | Context | | |

9 | | +---------------+ | | | - User/Group | | |

RBAC Objects:

Roles and RoleBindings (namespaced)

ClusterRoles and ClusterRoleBindings (cluster-wide)

These objects define who can access what resources and perform what actions.

Security Contexts:

Pod Security Context: Applies to all containers in a pod

Container Security Context: Specific to individual containers

These define privilege and access control settings for pods and containers.

Network Policies:

Ingress Rules: Control incoming traffic to pods

Egress Rules: Control outgoing traffic from pods

These act as a virtual firewall for your Kubernetes cluster.

The diagram shows how these components interact within the Kubernetes cluster to provide a comprehensive security model. RBAC

controls access to Kubernetes API resources, Security Contexts manage the runtime security settings for pods and containers, and Network

Policies control the network traffic between pods and external sources

Role-Based Access Control (RBAC)

Regulates access to resources based on the roles of individual users.

Key objects: Role, ClusterRole, RoleBinding, ClusterRoleBinding.

Example: Creating a role that allows reading pods:

10 | | | | | | - SELinux | | |

11 | | v | | | - RunAsUser | | |

12 | | +---------------+ | | | - Capabilities | | |

13 | | | RoleBindings | | | +--------------------+ | |

14 | | | (Namespaced) | | | | | |

15 | | +---------------+ | | v | |

16 | | | | +--------------------+ | |

17 | | +---------------+ | | | Container Security | | |

18 | | | ClusterRoles | | | | Context | | |

19 | | |(Cluster- Wide)| | | | - RunAsNonRoot | | |

20 | | +---------------+ | | | - ReadOnlyRootFS | | |

21 | | | | | | - Privileged | | |

22 | | v | | +--------------------+ | |

23 | | +---------------+ | | | |

24 | | | ClusterRole- | | +--------------------------+ |

25 | | | Bindings | | |

26 | | | (Cluster-wide)| | |

27 | | +---------------+ | |

28 | | | |

29 | +-----------------------+ |

30 | |

31 | +---+ |

32 | | Network Policies | |

33 | | +---------------------+ +----------------------+ | |

34 | | | Ingress Rules | | Egress Rules | | |

35 | | | | | | | |

36 | | | - From: (sources) | | - To: (destinations) | | |

37 | | | - Ports | | - Ports | | |

38 | | +---------------------+ +----------------------+ | |

39 | | | |

40 | +---+ |

41 | |

42 +---+

Security Contexts

Define privilege and access control settings for Pods or Containers.

Can set UID, GID, capabilities, and other security parameters.

Network Policies

Specify how groups of pods are allowed to communicate with each other and other network endpoints.

Act as a virtual firewall for your Kubernetes cluster.

Exercise:

Deploying a Configurable Web ApplicationIn this exercise, we'll create a simple web application that reads its configuration from a

ConfigMap. We'll then deploy it to Kubernetes and expose it using a Service and Ingress.

This exercise demonstrates:

1. Creating and using ConfigMaps

2. Deploying a web application with Kubernetes

3. Exposing the application using a Service and Ingress

4. Injecting configuration into a container using environment variables

5. Mounting ConfigMap data as a volume

6. Updating configuration and seeing the changes reflected in the application

Step 1: Create a ConfigMap

First, let's create a ConfigMap with some configuration data:

1 apiVersion: rbac.authorization.k8s.io/v1

2 kind: Role

3 metadata:

4 namespace: default

5 name: pod-reader

6 Rules:

7 - apiGroups: [""]

8 resources: ["pods"]

9 verbs: ["get", "watch", "list"]

1 cat <<EOF | kubectl apply -f -

2 apiVersion: v1

3 kind: ConfigMap

4 metadata:

5 name: webapp-config

6 data:

7 BACKGROUND_COLOR: "#f0f0f0"

8 MESSAGE: "Welcome to our configurable web app!"

9 EOF

1 +--+

2 | Kubernetes Cluster |

3 | |

4 | +---+ |

5 | | ConfigMap | |

6 | | Name: webapp-config | |

7 | | Data: | |

8 | | +---------------------------------------+ | |

9 | | | Key | Value | | |

10 | | +-------------------+-------------------+ | |

This diagram shows:

1. The overall Kubernetes cluster environment.

2. Within the cluster, a ConfigMap named "webapp-config" is created.

3. The ConfigMap contains two key-value pairs:

BACKGROUND_COLOR: "#f0f0f0"

MESSAGE: "Welcome to our configurable web app!"

The diagram illustrates how the ConfigMap stores configuration data as key-value pairs, which can be used by applications running in the

cluster. This ConfigMap could be mounted as a volume or used as environment variables in a Pod, allowing the application to access these

configuration values at runtime.

Step 2: Create a Deployment

Now, let's create a Deployment for our web application. We'll use a simple Nginx image and inject our configuration as environment

variables:

11 | | | BACKGROUND_COLOR | "#f0f0f0" | | |

12 | | +-------------------+-------------------+ | |

13 | | | MESSAGE | "Welcome to our | | |

14 | | | | configurable | | |

15 | | | | web app!" | | |

16 | | +-------------------+-------------------+ | |

17 | | | |

18 | +---+ |

19 | |

20 +--+

1 cat <<EOF | kubectl apply -f -

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: webapp

6 spec:

7 replicas: 2

8 selector:

9 matchLabels:

10 app: webapp

11 template:

12 metadata:

13 labels:

14 app: webapp

15 spec:

16 containers:

17 - name: webapp

18 image: nginxtest

19 ports:

20 - containerPort: 80

21 envFrom:

22 - configMapRef:

23 name: webapp-config

24 volumeMounts:

25 - name: config

26 mountPath: /usr/share/nginx/html

27 volumes:

28 - name: config

29 configMap:

30 name: webapp-content

This diagram illustrates:

1. The overall Kubernetes Deployment named "webapp".

2. The ReplicaSet managing 2 replicas (Pods).

3. The structure of each Pod, including:

The container named "webapp" using the nginx:alpine image.

The container port 80 exposed.

31 items:

32 - key: index.html

33 path: index.html

34 EOF

1 +---+

2 | Kubernetes Cluster |

3 | |

4 | +---+ |

5 | | Deployment: webapp | |

6 | | | |

7 | | +---+ | |

8 | | | ReplicaSet (2 replicas) | | |

9 | | | | | |

10 | | | +---+ | | |

11 | | | | Pod 1 | | | |

12 | | | | +---+ | | | |

13 | | | | | Container: webapp. | | | | |

14 | | | | | | | | | |

15 | | | | | Image: nginx:alpine | | | | |

16 | | | | | Port: 80 | | | | |

17 | | | | | | | | | |

18 | | | | | EnvFrom: | | | | |

19 | | | | | ConfigMap: webapp-config | | | | |

20 | | | | | | | | | |

21 | | | | | VolumeMount: | | | | |

22 | | | | | Name: config | | | | |

23 | | | | | MountPath: /usr/share/nginx/html | | | | |

24 | | | | +---+ | | | |

25 | | | | | | | |

26 | | | | +---+ | | | |

27 | | | | | Volume: config | | | | |

28 | | | | | ConfigMap: webapp-config | | | | |

29 | | | | | Key: index.html | | | | |

30 | | | | | Path: index.html | | | | |

31 | | | | +---+ | | | |

32 | | | | | | | |

33 | | | +---+ | | |

34 | | | | | |

35 | | | +---+ | | |

36 | | | | Pod 2 | | | |

37 | | | | (Same structure as Pod 1) | | | |

38 | | | +---+ | | |

39 | | | | | |

40 | | +---+ | |

41 | | | |

42 | +---+ |

43 | |

44 +---+

Environment variables loaded from the ConfigMap "webapp-config".

A volume mount for the "/usr/share/nginx/html" path.

4. The volume configuration, which mounts the "index.html" key from the "webapp-config" ConfigMap.

The diagram shows how the Deployment manages multiple identical Pods, each containing a container with the specified configuration. It

also illustrates the use of ConfigMaps for both environment variables and file mounting, demonstrating how Kubernetes can inject

configuration data into containers.

Step 3: Create a ConfigMap for the HTML content

Let's create another ConfigMap to hold our HTML content:

1 cat <<EOF | kubectl apply -f -

2 apiVersion: v1

3 kind: ConfigMap

4 metadata:

5 name: webapp-content

6 data:

7 index.html: |

8 <!DOCTYPE html>

9 <html>

10 <head>

11 <title>Configurable Web App</title>

12 <style>

13 body { background-color: \${BACKGROUND_COLOR}; font-family: Arial, sans-serif; }

14 </style>

15 </head>

16 <body>

17 <h1>\${MESSAGE}</h1>

18 <p>This page is served by Nginx and configured using Kubernetes ConfigMaps.</p>

19 </body>

20 </html>

21 EOF

1 +--+

2 | Kubernetes Cluster |

3 | |

4 | +--+ |

5 | | ConfigMap: webapp-config | |

6 | | | |

7 | | Data: | |

8 | | BACKGROUND_COLOR: "#f0f0f0" | |

9 | | MESSAGE: "Welcome to our configurable..." | |

10 | +--+ |

11 | |

12 | +--+ |

13 | | ConfigMap: webapp-content | |

14 | | | |

15 | | Data: | |

16 | | index.html: (HTML content) | |

17 | | - Uses ${BACKGROUND_COLOR} | |

18 | | - Uses ${MESSAGE} | |

19 | +--+ |

20 | |

21 | +--+ |

22 | | Deployment: webapp | |

23 | | | |

This updated diagram now includes:

1. The original webapp-config ConfigMap with BACKGROUND_COLOR and MESSAGE .

2. The new webapp-content ConfigMap containing the index.html template.

3. The Deployment and Pod structure, showing how these ConfigMaps are used:

webapp-config is used as environment variables (EnvFrom).

webapp-content is mounted as a volume, providing the index.html file.

The new webapp-content ConfigMap contains an HTML template that uses the ${BACKGROUND_COLOR} and ${MESSAGE} variables.

These variables will be replaced with the actual values from the webapp-config ConfigMap when the page is served.This setup allows for

a dynamic, configurable web application where:

The content of the page (HTML structure) is defined in one ConfigMap (webapp-content).

The configuration values (background color and message) are defined in another ConfigMap (webapp-config).

The Nginx container serves the HTML content, with the variables replaced by the actual configuration values.

This separation of concerns makes it easy to update either the content template or the configuration values independently, providing

flexibility in managing your web application's appearance and content.

Step 4: Create a Service

Now, let's create a Service to expose our Deployment:

24 | | +--+ | |

25 | | | Pod | | |

26 | | | +-------------------------------+ | | |

27 | | | | Container: webapp | | | |

28 | | | | | | | |

29 | | | | - Image: nginx:alpine | | | |

30 | | | | - Port: 80 | | | |

31 | | | | | | | |

32 | | | | EnvFrom: | | | |

33 | | | | ConfigMap: webapp-config | | | |

34 | | | | | | | |

35 | | | | VolumeMount: | | | |

36 | | | | Name: config | | | |

37 | | | | MountPath: /usr/share/... | | | |

38 | | | +-------------------------------+ | | |

39 | | | | | |

40 | | | +-------------------------------+ | | |

41 | | | | Volume: config | | | |

42 | | | | ConfigMap: webapp-content | | | |

43 | | | | Key: index.html | | | |

44 | | | | Path: index.html | | | |

45 | | | +-------------------------------+ | | |

46 | | +--+ | |

47 | +--+ |

48 +--+

1 cat <<EOF | kubectl apply -f -

2 apiVersion: v1

3 kind: Service

4 metadata:

5 name: webapp-service

6 spec:

7 selector:

8 app: webapp

9 ports:

10 - protocol: TCP

11 port: 80

12 targetPort: 80

13 EOF

1 +--+

2 | Kubernetes Cluster |

3 | |

4 | +---+ |

5 | | ConfigMap: webapp-config | |

6 | | | |

7 | | Data: | |

8 | | BACKGROUND_COLOR: "#f0f0f0" | |

9 | | MESSAGE: "Welcome to our configurable..." | |

10 | +---+ |

11 | |

12 | +---+ |

13 | | ConfigMap: webapp-content | |

14 | | | |

15 | | Data: | |

16 | | index.html: (HTML content) | |

17 | | - Uses ${BACKGROUND_COLOR} | |

18 | | - Uses ${MESSAGE} | |

19 | +---+ |

20 | |

21 | +---+ |

22 | | Deployment: webapp | |

23 | | | |

24 | | +---------------------------------------+ | |

25 | | | Pod | | |

26 | | | +-------------------------------+ | | |

27 | | | | Container: webapp | | | |

28 | | | | | | | |

29 | | | | - Image: nginx:alpine | | | |

30 | | | | - Port: 80 | | | |

31 | | | | | | | |

32 | | | | EnvFrom: | | | |

33 | | | | ConfigMap: webapp-config | | | |

34 | | | | | | | |

35 | | | | VolumeMount: | | | |

36 | | | | Name: config | | | |

37 | | | | MountPath: /usr/share/... | | | |

38 | | | +-------------------------------+ | | |

39 | | | | | |

40 | | | +-------------------------------+ | | |

41 | | | | Volume: config | | | |

42 | | | | ConfigMap: webapp-content | | | |

43 | | | | Key: index.html | | | |

44 | | | | Path: index.html | | | |

45 | | | +-------------------------------+ | | |

46 | | +---------------------------------------+ | |

47 | +---+ |

48 | |

49 | +---+ |

50 | | Service: webapp-service | |

51 | | | |

52 | | Selector: app: webapp | |

53 | | Port: 80 -> targetPort: 80 | |

This updated diagram now includes:

1. The original webapp-config ConfigMap with BACKGROUND_COLOR and MESSAGE .

2. The webapp-content ConfigMap containing the index.html template.

3. The Deployment and Pod structure, showing how these ConfigMaps are used.

4. The new webapp-service Service, which:

Selects Pods with the label app: webapp

Exposes port 80 and forwards traffic to the Pods' port 80

The Service acts as a stable network endpoint for the Pods created by the Deployment. It provides:

Load balancing: Distributes incoming traffic across all Pods matching the selector.

Service discovery: Provides a stable IP address and DNS name for the set of Pods.

Port mapping: Maps the Service port (80) to the target port on the Pods (also 80 in this case).

This Service allows other components within the cluster (or external to the cluster, depending on the Service type) to access the webapp

Pods without needing to know the individual Pod IP addresses. It adds a layer of abstraction that enhances the scalability and flexibility of

your application.The flow of traffic would typically be:External Request -> Service (webapp-service) -> Pod (webapp) -> Container

(nginx:alpine)This setup allows you to scale your Deployment (adding or removing Pods) without changing how other components interact

with your webapp, as they will always communicate through the Service.

Step 5: Create an Ingress

If your cluster has an Ingress controller, you can create an Ingress resource:

54 | +---+ |

55 +--+

1 cat <<EOF | kubectl apply -f -

2 apiVersion: networking.k8s.io/v1

3 kind: Ingress

4 metadata:

5 name: webapp-ingress

6 annotations:

7 nginx.ingress.kubernetes.io/rewrite-target: /

8 spec:

9 rules:

10 - host: webapp.example.com

11 http:

12 paths:

13 - path: /

14 pathType: Prefix

15 backend:

16 service:

17 name: webapp-service

18 port:

19 number: 80

20 EOF

1 +--+

2 | Kubernetes Cluster |

3 | |

4 | +---+ |

5 | | ConfigMap: webapp-config | |

6 | | | |

7 | | Data: | |

8 | | BACKGROUND_COLOR: "#f0f0f0" | |

9 | | MESSAGE: "Welcome to our configurable..." | |

This updated diagram now includes:

1. The original webapp-config ConfigMap with BACKGROUND_COLOR and MESSAGE .

2. The webapp-content ConfigMap containing the index.html template.

10 | +---+ |

11 | |

12 | +---+ |

13 | | ConfigMap: webapp-content | |

14 | | | |

15 | | Data: | |

16 | | index.html: (HTML content) | |

17 | | - Uses ${BACKGROUND_COLOR} | |

18 | | - Uses ${MESSAGE} | |

19 | +---+ |

20 | |

21 | +---+ |

22 | | Deployment: webapp | |

23 | | | |

24 | | +---------------------------------------+ | |

25 | | | Pod | | |

26 | | | +-------------------------------+ | | |

27 | | | | Container: webapp | | | |

28 | | | | | | | |

29 | | | | - Image: nginx:alpine | | | |

30 | | | | - Port: 80 | | | |

31 | | | | | | | |

32 | | | | EnvFrom: | | | |

33 | | | | ConfigMap: webapp-config | | | |

34 | | | | | | | |

35 | | | | VolumeMount: | | | |

36 | | | | Name: config | | | |

37 | | | | MountPath: /usr/share/... | | | |

38 | | | +-------------------------------+ | | |

39 | | | | | |

40 | | | +-------------------------------+ | | |

41 | | | | Volume: config | | | |

42 | | | | ConfigMap: webapp-content | | | |

43 | | | | Key: index.html | | | |

44 | | | | Path: index.html | | | |

45 | | | +-------------------------------+ | | |

46 | | +---------------------------------------+ | |

47 | +---+ |

48 | |

49 | +---+ |

50 | | Service: webapp-service | |

51 | | | |

52 | | Selector: app: webapp | |

53 | | Port: 80 -> targetPort: 80 | |

54 | +---+ |

55 | |

56 | +---+ |

57 | | Ingress: webapp-ingress | |

58 | | | |

59 | | Host: webapp.example.com | |

60 | | Path: / | |

61 | | Backend: webapp-service:80 | |

62 | +---+ |

63 +--+

3. The Deployment and Pod structure, showing how these ConfigMaps are used.

4. The webapp-service Service that exposes the Pods.

5. The new webapp-ingress Ingress resource, which:

Routes traffic for the host webapp.example.com

Directs all paths (/) to the webapp-service on port 80

The Ingress resource acts as an entry point for external traffic into the cluster. It provides:

Host-based routing: It routes traffic based on the webapp.example.com hostname.

Path-based routing: In this case, all paths (/) are routed to the backend service.

Integration with the Ingress Controller: The nginx.ingress.kubernetes.io/rewrite-target: / annotation is specific to the NGINX

Ingress Controller, indicating that the path should be rewritten to / when forwarding to the backend.

The flow of traffic would now be:External Request -> Ingress Controller -> Ingress (webapp-ingress) -> Service (webapp-service) -> Pod

(webapp) -> Container (nginx:alpine)This setup allows you to:

1. Access your application from outside the cluster using a domain name (webapp.example.com).

2. Potentially host multiple applications on the same IP address using different hostnames.

3. Implement more complex routing rules if needed (e.g., routing different paths to different services).

Remember to ensure that:

The Ingress Controller is installed in your cluster.

The DNS for webapp.example.com is configured to point to your cluster's external IP.

Any necessary TLS certificates are configured if you want to enable HTTPS.

This Ingress resource completes the basic setup of a web application in Kubernetes, providing a full path for external traffic to reach your

containerized application.

Step 6: Verify the deployment

Check if all resources are created and running:

kubectl get configmaps

kubectl get deployments

kubectl get pods

kubectl get services

kubectl get ingress

1 kubectl get configmaps

2 NAME DATA AGE

3 kube-root-ca.crt 1 21m

4 webapp-config 2 18m

5 webapp-content 1 13m

6

7 kubectl get deployments

8 NAME READY UP-TO-DATE AVAILABLE AGE

9 webapp 2/2 2 2 11m

10

11 kubectl get pods

12 NAME READY STATUS RESTARTS AGE

13 webapp-756448c658-8h5lz 1/1 Running 0 7m26s

14 webapp-756448c658-b6gnr 1/1 Running 0 7m33s

15

16 kubectl get services

17 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

18 kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 22m

Step 7: Access the application

If you're using Minikube, you can use port-forwarding to access the application:

kubectl port-forward service/webapp-service 8080:80

Then open a web browser and go to http://localhost:8080 .If you're using an Ingress, add the following to your /etc/hosts file:

echo "127.0.0.1 web-app.info" | sudo tee -a /etc/hosts

Then access the application at http://webapp.example.com .

Step 8: Modify the configuration

Let's change the background color and message:

kubectl edit configmap webapp-config

Change the BACKGROUND_COLOR to "#e0e0e0" and the MESSAGE to "Updated configuration!" .

Step 9: Restart the Deployment to pick up the new configuration

kubectl rollout restart deployment webapp

Step 10: Access the application again to see the changes

Day 5: Working with local K8s options

Docker Images in kind

Building a custom Docker image

Create a Dockerfile for your application.

Build the image: docker build -t your-image:tag .

Loading the image into kind cluster

Use the command: kind load docker-image your-image:tag

This copies the image from your local Docker daemon into the kind cluster.

Limitations and workarounds for Docker-in-Docker scenarios

kind runs Kubernetes inside Docker, which can complicate building images inside the cluster.

Workaround: Use kaniko or buildkit for in-cluster builds.

Creating deployments with custom images

Create a deployment YAML file (e.g., deployment.yaml) referencing your custom image:

19 webapp-service ClusterIP 10.107.192.80 <none> 80/TCP 5m20s

20

21 kubectl get ingress

22 NAME CLASS HOSTS ADDRESS PORTS AGE

23 webapp-ingress <none> webapp.example.com 80 3m52s

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: your-app

5 spec:

6 replicas: 1

7 selector:

8 matchLabels:

9 app: your-app

10 template:

Apply the deployment: kubectl apply -f deployment.yaml

Working with Images in Minikube

Minikube provides several options for working with Docker images:

Using the Host Docker Daemon

Configure your terminal to use Minikube's Docker daemon:

eval $(minikube docker-env)

Build your image. It will now be available to Minikube without additional steps.

Loading Images into Minikube

If you've built the image using your host's Docker daemon:

minikube image load your-image:tag

This copies the image from your local Docker daemon into Minikube.

Creating Deployments with Custom Images

Create a deployment YAML file (e.g., deployment.yaml) referencing your custom image:

Apply the deployment: kubectl apply -f deployment.yaml

Minikube-Specific Features

Built-in Docker Registry

Minikube includes a built-in Docker registry. To use it:

Enable the registry addon:

minikube addons enable registry

11 metadata:

12 labels:

13 app: your-app

14 spec:

15 containers:

16 - name: your-app

17 image: your-image:tag

18 imagePullPolicy: Never

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: your-app

5 spec:

6 replicas: 1

7 selector:

8 matchLabels:

9 app: your-app

10 template:

11 metadata:

12 labels:

13 app: your-app

14 spec:

15 containers:

16 - name: your-app

17 image: your-image:tag

18 imagePullPolicy: IfNotPresent

Push your image to the Minikube registry:

docker push $(minikube ip):5000/your-image:tag

Update your deployment to use the registry image:

image: localhost:5000/your-image:tag

Direct Image Building

Minikube can build images directly using its Docker daemon:

minikube image build -t your-image:tag .

This builds the image inside Minikube, making it immediately available for use.

Monitoring and Troubleshooting

Check if your pods are running:

kubectl get pods

If pods are not in the "Running" state, check the logs:

kubectl logs <pod-name>

For more detailed troubleshooting, use:

kubectl describe pod <pod-name>

To access the Minikube Docker daemon logs:

minikube logs

Cleaning Up

To remove unused images and free up space:

minikube image rm your-image:tag

By following these steps, you can effectively work with custom Docker images in your Minikube cluster, allowing you to develop and test

your Kubernetes deployments locally. Minikube offers more flexibility in terms of image handling compared to kind, making it a popular

choice for local Kubernetes development.

Best Practices

1. Use meaningful tags for your images, preferably based on git commit hashes or semantic versioning.

2. When updating your application, build a new image with a new tag, then update your deployment to use the new image tag.

3. For production-like setups, consider using a private Docker registry. Minikube can be configured to pull from private registries.

Week 2: Service Mesh Concepts and Python

Day 1-2: Service Mesh

Fundamentals

Core concepts of service mesh

A dedicated infrastructure layer for handling service-to-service communication.

Provides features like service discovery, load balancing, encryption, observability, traceability, authentication, and authorization.

Problems service meshes solve

Complexity in microservices communication

Lack of observability in distributed systems

Inconsistent security policies across services

Difficulty in implementing resilience patterns (circuit breaking, retries)

Evolution of ingress

From simple L7 load balancers to advanced API gateways

Integration with service mesh for consistent policy enforcement

Service Mesh Architecture

A service mesh consists of two primary components: the data plane and the control plane.

Data Plane

The data plane is composed of a network of lightweight proxies, typically deployed as sidecars alongside each service instance. These

proxies intercept and manage all network traffic to and from the service.

Example:

Let's consider a simple e-commerce application with three microservices: Product, Order, and Payment. In a service mesh, each instance of

these services would have a sidecar proxy deployed alongside it:

When the Order service needs to communicate with the Payment service, the request goes through the following path:

1. Order service -> Order's sidecar proxy

2. Order's sidecar proxy -> Payment's sidecar proxy

3. Payment's sidecar proxy -> Payment service

This allows the mesh to control and observe all inter-service communication.

Control Plane

The control plane manages and configures the proxies to enforce policies, collect telemetry, and handle service discovery.

Example:

Using Istio as an example, the control plane consists of several components:

Pilot: Handles service discovery and traffic management

Citadel: Manages security and access policies

Galley: Validates configuration and distributes it to other components

The control plane would configure the sidecar proxies to implement specific routing rules, such as:

1 Product Service + Sidecar Proxy

2 Order Service + Sidecar Proxy

3 Payment Service + Sidecar Proxy

1 apiVersion: networking.istio.io/v1alpha3

2 kind: VirtualService

3 metadata:

4 name: payment-route

5 spec:

6 hosts:

7 - payment

8 http:

9 - route:

10 - destination:

11 host: payment

12 subset: v1

13 weight: 90

14 - destination:

15 host: payment

16 subset: v2

17 weight: 10

This configuration would route 90% of traffic to version 1 of the Payment service and 10% to version 2, enabling canary deployments or A/B

testing.

Here is an example using Linkerd's control plane. This is simpler and consists of fewer components compared to Istio. The main

components are:

1. Destination: Handles service discovery and provides configuration to proxies

2. Identity: Manages security and certificate issuance for mTLS

3. Proxy Injector: Injects the Linkerd proxy as a sidecar

For traffic splitting in Linkerd, you would use either a TrafficSplit resource (if using the SMI extension) or an HTTPRoute resource (which is

the preferred method going forward).

Here's an example using HTTPRoute:

This configuration would achieve the same result as the Istio example, routing 90% of traffic to version 1 of the Payment service and 10% to

version 2.

Key Features and Use Cases

Service Discovery and Load Balancing

Service meshes provide dynamic service discovery and intelligent load balancing.

Example:

In our e-commerce application, if we scale the Payment service to three instances, the service mesh would automatically discover these

instances and distribute traffic among them. It could use advanced load balancing algorithms like least connections or weighted round-robin.

Traffic Management

Service meshes offer fine-grained control over traffic routing.

Example:

Implementing a canary release for the Product service:

1 apiVersion: policy.linkerd.io/v1beta2

2 kind: HTTPRoute

3 metadata:

4 name: payment-route

5 namespace: your-namespace

6 spec:

7 parentRefs:

8 - name: payment

9 kind: Service

10 group: core

11 port: 8080

12 rules:

13 - backendRefs:

14 - name: payment-v1

15 port: 8080

16 weight: 90

17 - name: payment-v2

18 port: 8080

19 weight: 10

1 apiVersion: networking.istio.io/v1alpha3

2 kind: VirtualService

3 metadata:

4 name: product-canary

5 spec:

6 hosts:

This configuration routes all traffic from Chrome browsers to version 2 of the Product service, while all other traffic goes to version 1.

With Linkerd use HTTPRoute resource to define the traffic splitting:

This configuration routes all traffic from Chrome browsers to version 2 of the Product service, while all other traffic goes to version 1.

For more advanced canary deployments, you can use tools like Flagger with Linkerd. Flagger automates the process of creating new

Kubernetes resources, watching metrics, and incrementally sending users to the new version.

Here's an example of how you might set up a Flagger canary for the Product service:

7 - product

8 http:

9 - match:

10 - headers:

11 user-agent:

12 regex: ".*Chrome.*"

13 route:

14 - destination:

15 host: product

16 subset: v2

17 - route:

18 - destination:

19 host: product

20 subset: v1

1 apiVersion: policy.linkerd.io/v1beta2

2 kind: HTTPRoute

3 metadata:

4 name: product-canary

5 namespace: your-namespace

6 spec:

7 parentRefs:

8 - name: product

9 kind: Service

10 group: core

11 port: 8080

12 rules:

13 - matches:

14 - headers:

15 - name: user-agent

16 regex: ".*Chrome.*"

17 backendRefs:

18 - name: product-v2

19 port: 8080

20 - backendRefs:

21 - name: product-v1

22 port: 8080

1 apiVersion: flagger.app/v1beta1

2 kind: Canary

3 metadata:

4 name: product

5 namespace: test

6 spec:

7 targetRef:

8 apiVersion: apps/v1

9 kind: Deployment

10 name: product

11 service:

12 port: 8080

This configuration sets up a canary deployment that gradually increases traffic to the new version while monitoring success rate and latency.

Observability

Service meshes provide detailed insights into service-to-service communication.

Example:

Using Istio with Prometheus and Grafana, you can visualize request volume, latency, and error rates for each service. You might see a

dashboard showing:

Request rate for Product service: 100 requests/second

95th percentile latency for Order service: 250ms

Error rate for Payment service: 0.1%

This level of observability helps quickly identify and troubleshoot issues in the distributed system.

Linkerd provides similar observability capabilities to Istio, there are some differences in how it implements and presents these features.

1. Using the Linkerd CLI:

linkerd viz stat deploy -n your-namespace

This command would show you a table with metrics for each deployment, including:

Success rate

Request per second (RPS)

Latency (P50, P95, P99)

2. Using the Linkerd dashboard:

You can access it by running:

linkerd viz dashboard

In the dashboard, you would see:

Request rate for Product service: 100 req/sec

95th percentile latency for Order service: 250ms

Success rate for Payment service: 99.9% (which is equivalent to a 0.1% error rate)

Security

Service meshes can enforce mutual TLS (mTLS) encryption and fine-grained access policies.

Example:

Enforcing mTLS between all services:

13 analysis:

14 interval: 30s

15 threshold: 5

16 maxWeight: 50

17 stepWeight: 5

18 metrics:

19 - name: success-rate

20 threshold: 99

21 interval: 1m

22 - name: latency

23 threshold: 500

24 interval: 1m

1 apiVersion: security.istio.io/v1beta1

2 kind: PeerAuthentication

3 metadata:

This configuration ensures all inter-service communication is encrypted and authenticated.

Linkerd automatically enables mTLS for all meshed services by default, so you don't need to explicitly configure it. However, if you want to

ensure that only mTLS traffic is allowed, you can use Linkerd's authorization policies.

Challenges and Best Practices

While service meshes offer numerous benefits, they also introduce complexity and potential performance overhead.

Performance Considerations

The additional network hops introduced by sidecar proxies can increase latency. It's crucial to benchmark your application with and without

the service mesh to understand the performance impact.

Best Practice:Start with a subset of your services in the mesh and gradually expand as you become more comfortable with the technology

and its impact on your system.

Complexity Management

Service meshes add another layer to your infrastructure, which can increase operational complexity.

Best Practice:Invest time in your training.

Monitoring and Troubleshooting

While service meshes provide extensive observability, the volume of data can be overwhelming.

Best Practice:Define clear Service Level Objectives (SLOs) and set up alerts based on these. Use distributed tracing to debug complex

issues across services.

In conclusion, service meshes offer powerful capabilities for managing microservices architectures, but they require careful planning and

implementation. By understanding the core concepts and following best practices, organizations can leverage service meshes to build more

resilient, observable, and secure distributed systems.

Day 3-4: Python for Kubernetes

Python basics review (if needed)

Data Types

Python has several built-in data types:

Numeric: int, float, complex

Sequence: list, tuple, range

Text: str

Mapping: dict

Set: set, frozenset

Boolean: bool

Example:

Numeric Types

int (Integer)

4 name: default

5 namespace: istio-system

6 spec:

7 mtls:

8 mode: STRICT

1 age = 30

float (Floating-point)

complex

Sequence Types

list

tuple

range

Text Type

str (String)

Mapping Type

dict (Dictionary)

2 year = 2024

3 temperature = -5

4 x = 5

1 pi = 3.14159

2 weight = 68.5

3 temperature = -2.8

4 y = 3.14

1 z = 3 + 4j

2 w = complex(2, -3)

1 fruits = ["apple", "banana", "cherry"]

2 numbers = [1, 2, 3, 4, 5]

3 mixed = [1, "two", 3.0, [4, 5]]

1 coordinates = (10, 20)

2 rgb = (255, 0, 128)

3 person = ("John", 30, "London")

1 numbers = range(5) # 0, 1, 2, 3, 4

2 even_numbers = range(0, 10, 2) # 0, 2, 4, 6, 8

1 name = "Alice"

2 message = 'Hello, World!'

3 multiline = """This is a

4 multiline string."""

1 person = {"name": "Bob", "age": 25, "city": "Manchester"}

2 scores = {

3 "Alice": 95,

4 "Bob": 87,

5 "Charlie": 92

6 }

Set Types

set

frozenset

Boolean Type

bool

Here are some examples of how these data types can be used in practice:

These examples demonstrate the basic usage of each data type. Remember that Python is dynamically typed, meaning you don't need to

declare the type of a variable explicitly. The interpreter infers the type based on the value assigned to it.

Control Structures

If-else statements:

1 unique_numbers = {1, 2, 3, 4, 5}

2 fruits = {"apple", "banana", "cherry"}

1 immutable_set = frozenset([1, 2, 3, 4, 5])

1 is_raining = True

2 has_licence = False

3 is_adult = age >= 18

1 # Calculating area of a circle

2 radius = 5.0

3 area = pi * radius**2

4 print(f"The area of the circle is {area:.2f} square units")

5

6 # Working with lists

7 fruits.append("orange")

8 print(f"The second fruit is {fruits[1]}")

9

10 # Using a dictionary

11 print(f"{person['name']} is {person['age']} years old and lives in {person['city']}")

12

13 # Set operations

14 a = {1, 2, 3, 4}

15 b = {3, 4, 5, 6}

16 print(f"Union: {a | b}")

17 print(f"Intersection: {a & b}")

18

19 # Boolean logic

20 if is_adult and not is_raining:

21 print("Let's go for a walk!")

1 if x > 0:

2 print("Positive")

3 elif x < 0:

4 print("Negative")

5 else:

6 print("Zero")

For loops:

While loops:

Functions

Classes

Python Package Management

pip

pip is the standard package manager for Python. It allows you to install and manage additional packages that are not part of the Python

standard library.

Installing a package:

python3 -m pip install requests

Upgrading a package:

python3 -m pip install --upgrade requests

Python Virtual Environments

Virtual environments are isolated Python environments that allow you to install packages for specific projects without affecting your system-

wide Python installation.

Creating a virtual environment:

python3 -m venv .venv

Here's a breakdown of what each part of the command does:

python3 : This specifies that you are using Python 3 to execute the command. It ensures that the virtual environment is created using

Python 3.

-m venv : The -m flag tells Python to run a module as a script. In this case, it runs the venv module, which is included in the standard

library from Python 3.3 onwards, for creating virtual environments.

1 for i in range(5):

2 print(i)

1 count = 0

2 while count < 5:

3 print(count)

4 count += 1

1 def greet(name):

2 return f"Hello, {name}!"

3

4 message = greet("Alice")

5 print(message)

1 class Dog:

2 def __init__(self, name):

3 self.name = name

4

5 def bark(self):

6 return f"{self.name} says Woof!"

7

8 my_dog = Dog("Buddy")

9 print(my_dog.bark())

.venv : This is the name of the directory where the virtual environment will be created. The dot (.) at the beginning makes it a hidden

directory on Unix-like systems, which is a common convention to keep your project directory tidy.

Activating a virtual environment:On Unix or MacOS:

source .venv/bin/activate

On Windows:

.venv\Scripts\activate

Installing packages in a virtual environment:

Once activated, you can use pip to install packages, and they will be isolated to this environment.

pip install requests

Deactivating a virtual environment:

deactivate

Creating a requirements file:

To share your project's dependencies, you can create a requirements.txt file:

pip freeze > requirements.txt

Installing from a requirements file:

pip install -r requirements.txt

Remember, it's a good practice to use virtual environments for each of your Python projects to avoid conflicts between package versions.

Explore pyenv

Kubernetes Python client library

Installation: pip install kubernetes

This will allow Authentication and configuration, Creating, reading, updating, and deleting Kubernetes resources

Simple Python scripts for Kubernetes interaction

Here is an example to;

Listing pods in a namespace

Creating and managing deployments

Watching for changes in resources

Example script to list pods:

Create a virtual env

python3 -m venv .venv

source .venv/bin/activate

pip install kubernetes

Create testscript.py

1 from kubernetes import client, config

2

3 config.load_kube_config()

4 v1 = client.CoreV1Api()

5

6 pods = v1.list_pod_for_all_namespaces(watch=False)

7 for pod in pods.items:

8 print(f"{pod.metadata.namespace}\t{pod.metadata.name}")

https://realpython.com/intro-to-pyenv/

python3 testscript.py

If running minikube the output may look like this

You now have the basics to interact with a kubernetes cluster via python.

Link:

GitHub - kubernetes-client/python: Official Python client library for kubernetes

Day 5: Helm Basics

Helm's Purpose and Architecture

Helm is a package manager for Kubernetes that simplifies the deployment and management of applications. It allows you to define, install,

and upgrade even the most complex Kubernetes applications.

Helm Essentials in Under an Hour < a good tutorial

Key Components:

1. Helm Client: The command-line tool used to create, package, and manage charts.

2. Charts: Packages of pre-configured Kubernetes resources.

3. Releases: Instances of a chart running in a Kubernetes cluster.

Creating and Structure of a Helm Chart

Let's create a chart and examine its structure:

You will have needed to install helm

helm create mychart

cd mychart

The chart structure:

Chart.yaml Example:

1 default debug-env

2 default webapp-6988595754-qnkqp

3 default webapp-6d989cd746-8wgzs

4 default webapp-cf544bc7c-24zpb

5 kube-system coredns-7db6d8ff4d-t46mv

6 kube-system etcd-minikube

7 kube-system kube-apiserver-minikube

8 kube-system kube-controller-manager-minikube

9 kube-system kube-proxy-jkgd5

10 kube-system kube-scheduler-minikube

11 kube-system storage-provisioner

1 mychart/

2 Chart.yaml # Metadata about the chart

3 values.yaml # Default configuration values

4 charts/ # Directory for chart dependencies

5 templates/ # Directory for template files

6 deployment.yaml

7 service.yaml

8 ingress.yaml

9 _helpers.tpl # Template helpers

10 .helmignore # Patterns to ignore when packaging

1 apiVersion: v2

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://youtu.be/-Bq2BVdzydc
https://youtu.be/-Bq2BVdzydc
https://helm.sh/docs/intro/install/

values.yaml Example:

Deploying Applications with Helm

To install a chart:

helm install myrelease ./mychart

To customize values during installation:

helm install myrelease ./mychart --set service.type=LoadBalancer

Or using a custom values file:

helm install myrelease ./mychart -f custom-values.yaml

Advanced Helm Concepts

Hooks

Hooks allow you to intervene at certain points in a release's lifecycle. Here's an example of a pre-install hook:

Dependencies

You can define dependencies in the Chart.yaml file:

2 name: mychart

3 description: A Helm chart for Kubernetes

4 type: application

5 version: 0.1.0

6 appVersion: "1.16.0"

1 replicaCount: 1

2

3 image:

4 repository: nginx

5 pullPolicy: IfNotPresent

6 tag: ""

7

8 service:

9 type: ClusterIP

10 port: 80

11

12 ingress:

13 enabled: false

1 apiVersion: batch/v1

2 kind: Job

3 metadata:

4 name: {{ .Release.Name }}-pre-install-job

5 annotations:

6 "helm.sh/hook": pre-install

7 spec:

8 template:

9 spec:

10 containers:

11 - name: pre-install-job

12 image: busybox

13 command: ['sh', '-c', 'echo Pre-install job running']

14 restartPolicy: Never

1 dependencies:

2 - name: apache

3 version: 1.2.3

Then, update dependencies:

Templating

Helm uses Go templates. Here's an example of a template using conditionals and loops:

Creating Helm Charts with Python Templates

While Helm natively uses Go templates, you can use Python to generate Helm charts dynamically.

Using Jinja2 for Templating

Here's an example of using Jinja2 to generate a Kubernetes manifest:

4 repository: https://charts.bitnami.com/bitnami

1 helm dependency update

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: {{ .Release.Name }}-deployment

5 spec:

6 replicas: {{ .Values.replicaCount }}

7 selector:

8 matchLabels:

9 app: {{ .Chart.Name }}

10 template:

11 metadata:

12 labels:

13 app: {{ .Chart.Name }}

14 spec:

15 containers:

16 - name: {{ .Chart.Name }}

17 image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"

18 ports:

19 - containerPort: 80

20 {{- if .Values.env }}

21 env:

22 {{- range $key, $value := .Values.env }}

23 - name: {{ $key }}

24 value: {{ $value | quote }}

25 {{- end }}

26 {{- end }}

1 from jinja2 import Template

2

3 template = Template("""

4 apiVersion: apps/v1

5 kind: Deployment

6 metadata:

7 name: {{ name }}-deployment

8 spec:

9 replicas: {{ replicas }}

10 selector:

11 matchLabels:

12 app: {{ name }}

13 template:

14 metadata:

15 labels:

Generating Kubernetes Manifests Dynamically

You can use Python to read configuration from various sources and generate Helm charts:

Integrating with CI/CD Pipelines

You can incorporate this Python-based chart generation into your CI/CD pipeline:

16 app: {{ name }}

17 spec:

18 containers:

19 - name: {{ name }}

20 image: {{ image }}

21 ports:

22 - containerPort: {{ port }}

23 """)

24

25 rendered = template.render(

26 name="myapp",

27 replicas=3,

28 image="nginx:latest",

29 port=80

30)

31

32 print(rendered)

1 import yaml

2 from jinja2 import Template

3

4 def generate_chart(config):

5 # Load templates

6 deployment_template = Template(open('templates/deployment.yaml').read())

7 service_template = Template(open('templates/service.yaml').read())

8

9 # Render templates

10 deployment = deployment_template.render(config)

11 service = service_template.render(config)

12

13 # Combine rendered templates

14 chart = f"{deployment}\n---\n{service}"

15

16 return chart

17

18 # Read configuration

19 with open('app_config.yaml', 'r') as f:

20 config = yaml.safe_load(f)

21

22 # Generate chart

23 chart = generate_chart(config)

24

25 # Write chart to file

26 with open('generated_chart.yaml', 'w') as f:

27 f.write(chart)

1 # Example GitLab CI job

2 generate_helm_chart:

3 stage: build

4 script:

5 - pip install pyyaml jinja2

6 - python generate_chart.py

This job would generate the Helm chart as part of your CI/CD process, allowing for dynamic chart creation based on your application's

needs.These examples demonstrate how to create more complex Helm charts, use advanced features, and even integrate Python for

dynamic chart generation.

Week 3: Istio Deep Dive

Day 1: Istio Basics

Installing Istio on your Kubernetes cluster

Download Istio

Getting Started

Mac can use brew brew install istionctl

Install Istio

istio provides a demo for testing and learning:

It installs more components than the default profile, including:

Istiod (the Istio control plane)

Ingress gateway

Egress gateway

It enables a set of features that are suitable for demonstrating Istio's capabilities.

It has higher resource requirements than the minimal or default profiles.

It's not recommended for production use due to its expanded feature set and resource usage.

istioctl install --set profile=demo -y

Enable automatic sidecar injection

kubectl label namespace default istio-injection=enabled

Istio's architecture and core components

Control Plane

istiod: Combines Pilot, Citadel, and Galley into a single binary

Pilot

Pilot is a crucial module within Istiod that focuses on service discovery and traffic management. It is responsible for:

Service Discovery: Registers services and manages their information, such as versions, IP addresses, and ports.

Traffic Management: Directs traffic to different service versions or instances based on defined rules.

Routing and Load Balancing: Routes traffic according to rules and balances load across services.

Pilot interacts with the data plane by configuring service proxies (like Envoy) to manage ingress and egress traffic effectively.

Citadel

Citadel is another component integrated into Istiod, primarily handling security aspects. It manages:

Certificate Management: Provides certificate-based authentication and authorization.

Security Policies: Enforces security policies based on service identity.

Galley

7 artifacts:

8 paths:

9 - generated_chart.yaml

https://istio.io/latest/docs/setup/getting-started/#download
https://istio.io/latest/docs/setup/getting-started/#download

Galley was responsible for configuration management in Istio. It handled:

Configuration Verification and Distribution: Ensured the validity of configuration rules and distributed them to other Istio components.

Configuration Storage: Maintained properties and configuration information for Istio components.

Data Plane

Envoy proxy: Sidecar container deployed alongside each service

Addons

Prometheus: An open-source system for metrics collection and monitoring, storing data as time series with flexible querying capabilities.

Grafana: A platform for metrics visualization, providing a variety of visual representations to analyse time-series data from sources like

Prometheus.

Jaeger or Zipkin: Tools for distributed tracing that help monitor and troubleshoot microservices by collecting and analysing trace data.

Kiali: A service mesh observability tool that visualizes the structure and health of an Istio service mesh, aiding in monitoring and

troubleshooting.

Day 2: Istio Traffic Management

Exploring Istio's traffic management features

Virtual Services: Define routing rules for traffic

This configuration defines a VirtualService for managing HTTP traffic routing to different versions (subsets) of the reviews service. It

splits traffic between two subsets, v1 and v2 , with 75% going to v1 and 25% going to v2 .

Destination Rules: Define policies that apply after routing

1 apiVersion: networking.istio.io/v1alpha3

2 kind: VirtualService

3 metadata:

4 name: reviews-route

5 spec:

6 hosts:

7 - reviews

8 http:

9 - route:

10 - destination:

11 host: reviews

12 subset: v1

13 weight: 75

14 - destination:

15 host: reviews

16 subset: v2

17 weight: 25

1 apiVersion: networking.istio.io/v1alpha3

2 kind: DestinationRule

3 metadata:

4 name: reviews-destination

5 spec:

6 host: reviews

7 subsets:

8 - name: v1

9 labels:

10 version: v1

11 - name: v2

12 labels:

This configuration defines a DestinationRule for the reviews service, specifying two subsets, v1 and v2 . Each subset is identified by

labels that correspond to versions of the service. These subsets are referenced in the Istio configuration of the VirtualService , to route

traffic to specific versions of a service. This is useful for scenarios like canary deployments or A/B testing.

Gateways: Manage inbound and outbound traffic for the mesh

Implementing canary deployments and A/B testing

1. Use VirtualService (as above) to split traffic between versions

2. Gradually adjust weights to increase traffic to new version

3. Monitor metrics to ensure new version performs as expected

Istio's load balancing and circuit breaking capabilities

Load Balancing: Configure in DestinationRule

Circuit Breaking: Define in DestinationRule

Day 3: Istio Security and Observability

Istio's security features

mTLS (Mutual TLS)

Enable cluster-wide: kubectl apply -f istio-1.x.x/samples/security/strict-mtls.yaml

Verify: istioctl x authz check <pod-name>

Authorization Policies

13 version: v2

1 spec:

2 trafficPolicy:

3 loadBalancer:

4 simple: ROUND_ROBIN

1 spec:

2 trafficPolicy:

3 outlierDetection:

4 consecutiveErrors: 5

5 interval: 5s

6 baseEjectionTime: 30s

1 apiVersion: security.istio.io/v1beta1

2 kind: AuthorizationPolicy

3 metadata:

4 name: allow-read

5 spec:

6 action: ALLOW

7 rules:

8 - to:

9 - operation:

10 methods: ["GET"]

Exploring Istio's observability stack

Prometheus

Access dashboard: istioctl dashboard prometheus

Query metrics using PromQL

Grafana

Access dashboard: istioctl dashboard grafana

Explore pre-configured Istio dashboards

Kiali

Access dashboard: istioctl dashboard kiali

Visualize service mesh topology and health

Jaeger/Zipkin

Access Jaeger UI: istioctl dashboard jaeger

Analyze distributed traces

Day 4-5: Deploying a Sample Application with Istio

Objective

Deploy a simple web application with Istio sidecar injection and implement basic traffic routing.

Prerequisites

Kubernetes cluster set up

Istio installed with demo profile

kubectl and istioctl configured

Enable Istio Sidecar Injection

First, let's enable Istio sidecar injection for the default namespace:

kubectl label namespace default istio-injection=enabled

(This can be verified with kubectl get namespace default --show-labels)

The command is used to enable automatic Istio sidecar injection for the default namespace in a Kubernetes cluster.

Key points about this command:

1. Namespace-level control: By labeling a namespace, you're enabling Istio sidecar injection for all pods created in that namespace, unless

overridden at the pod level.

2. Automatic injection: When a namespace has this label, the Istio sidecar (Envoy proxy) will be automatically injected into all new pods

deployed in that namespace.

3. Existing workloads: This label only affects new pods. Existing workloads will need to be redeployed to get the sidecar injected.

4. Override option: Even with this namespace-level setting, individual pods can opt out of injection using the sidecar.istio.io/inject:

"false" annotation.

5. Verification: After applying this label, you can verify it worked by deploying a new pod in the namespace and checking for the presence of

the istio-proxy container.

6. Reversibility: You can disable injection for the namespace by changing the label value to disabled or removing the label entirely.

Deploy a Sample Application

Create a file named sample-app.yaml with the following content:

or to apply in one

Deploy the application:

Verify the deployment:

You should see two containers per pod (app + istio-proxy), indicating successful sidecar injection.

eg k describe pod/<pod name>

You will see something like

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: myapp

5 spec:

6 replicas: 2

7 selector:

8 matchLabels:

9 app: myapp

10 template:

11 metadata:

12 labels:

13 app: myapp

14 version: v1

15 spec:

16 containers:

17 - name: myapp

18 image: nginx:1.14.2

19 ports:

20 - containerPort: 80

21 ---

22 apiVersion: v1

23 kind: Service

24 metadata:

25 name: myapp

26 spec:

27 selector:

28 app: myapp

29 ports:

30 - port: 80

31 targetPort: 80

1 cat <<EOF | kubectl -f -

2 yaml

3 EOF

1 kubectl apply -f sample-app.yaml

1 kubectl get pods

1 Events:

2 Type Reason Age From Message

3 ---- ------ ---- ---- -------

Create a Virtual Service

Create a file named virtual-service.yaml :

Apply the Virtual Service:

View with

kubectl get svc

A VirtualService in Istio is a custom resource definition (CRD) that allows you to configure how requests are routed to services within the

Istio service mesh. It acts as a flexible and powerful tool for traffic management, enabling you to define routing rules that dictate how traffic

should be directed to different service versions or destinations based on specified criteria.

Key Features of VirtualService

Traffic Routing.

Decoupling Requests and Destinations.

Advanced Traffic Management.

Integration with Other Istio Resources.

Internal and External Traffic Control.

Create a Destination Rule

Create a file named destination-rule.yaml :

4 Normal Scheduled 5m default-scheduler Successfully assigned default/myapp-7d4cbc4c78-mhdmd to

minikube

5 Normal Pulled 5m kubelet Container image "docker.io/istio/proxyv2:1.23.2" already

present on machine

6 Normal Created 5m kubelet Created container istio-init

7 Normal Started 5m kubelet Started container istio-init

8 Normal Pulling 5m kubelet Pulling image "nginx:1.14.2"

9 Normal Pulled 4m54s kubelet Successfully pulled image "nginx:1.14.2" in 885ms (5.074s

including waiting). Image size: 102757429 bytes.

10 Normal Created 4m54s kubelet Created container myapp

11 Normal Started 4m54s kubelet Started container myapp

12 Normal Pulled 4m54s kubelet Container image "docker.io/istio/proxyv2:1.23.2" already

present on machine

13 Normal Created 4m54s kubelet Created container istio-proxy

14 Normal Started 4m54s kubelet Started container istio-proxy

1 apiVersion: networking.istio.io/v1alpha3

2 kind: VirtualService

3 metadata:

4 name: myapp-route

5 spec:

6 hosts:

7 - myapp

8 http:

9 - route:

10 - destination:

11 host: myapp

12 subset: v1

1 kubectl apply -f virtual-service.yaml

Apply the Destination Rule:

verify with

k get destinationrules

Test the Routing

To test the routing, we'll need to access the application. For simplicity, let's use port-forwarding:

Now, in another terminal, you can access the application:

You should see the nginx welcome page.

Implement Canary Deployment

Let's update our application to version 2. Create a file named sample-app-v2.yaml :

Deploy version 2:

1 apiVersion: networking.istio.io/v1alpha3

2 kind: DestinationRule

3 metadata:

4 name: myapp-destination

5 spec:

6 host: myapp

7 subsets:

8 - name: v1

9 labels:

10 version: v1

1 kubectl apply -f destination-rule.yaml

1 kubectl port-forward service/myapp 8080:80

1 curl http://localhost:8080

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: myapp-v2

5 spec:

6 replicas: 1

7 selector:

8 matchLabels:

9 app: myapp

10 version: v2

11 template:

12 metadata:

13 labels:

14 app: myapp

15 version: v2

16 spec:

17 containers:

18 - name: myapp

19 image: nginx:1.16.0

20 ports:

21 - containerPort: 80

Update the virtual-service.yaml to split traffic:

Update the destination-rule.yaml :

Apply the updated configurations:

Now, when you access the application, 75% of the traffic will go to v1 and 25% to v2.

Testing can be run as for i in {1..200}; do echo $(curl -s http://localhost:8080 | grep "version"); sleep .5; done `

observability

Apply Prometheus kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-

1.23/samples/addons/prometheus.yaml

Apply kiali kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.23/samples/addons/kiali.yaml

Access dashboard istioctl dashboard kiali

Conclusion

1 kubectl apply -f sample-app-v2.yaml

1 apiVersion: networking.istio.io/v1alpha3

2 kind: VirtualService

3 metadata:

4 name: myapp-route

5 spec:

6 hosts:

7 - myapp

8 http:

9 - route:

10 - destination:

11 host: myapp

12 subset: v1

13 weight: 75

14 - destination:

15 host: myapp

16 subset: v2

17 weight: 25

1 apiVersion: networking.istio.io/v1alpha3

2 kind: DestinationRule

3 metadata:

4 name: myapp-destination

5 spec:

6 host: myapp

7 subsets:

8 - name: v1

9 labels:

10 version: v1

11 - name: v2

12 labels:

13 version: v2

1 kubectl apply -f virtual-service.yaml

2 kubectl apply -f destination-rule.yaml

In this lesson, we've deployed a sample application with Istio, implemented basic traffic routing, and set up a canary deployment. This

demonstrates some of Istio's core traffic management capabilities. In a real-world scenario, you would monitor the performance of both

versions and gradually adjust the traffic split until you're confident in the new version's performance.Remember to clean up your resources

after the lesson:

This lesson provides a practical introduction to Istio's traffic management features. For more advanced scenarios, you could explore

features like fault injection, circuit breaking, and more complex routing rules.

If using minikube a simple minikube delete will remove all existance of the cluster

Week 4: Linkerd and Practical Applications

Day 1: Linkerd Basics

Installing Linkerd on your Kubernetes cluster

Install CLI

Installing Linkerd

Again Mac can use brew

curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install | sh

export PATH=$PATH:$HOME/.linkerd2/bin

linkerd version

Alternatively, you can download the binary directly from the Linkerd releases page.

Install Linkerd on Your Minikube Cluster

linkerd install --crds | kubectl apply -f -

linkerd install --set proxyInit.runAsRoot=true | kubectl apply -f -

Validate cluster

linkerd check --pre

Install Linkerd

linkerd install | kubectl apply -f -

Install viz

linkerd viz install | kubectl apply -f -

linkerd viz check

linkerd viz dashboard

Linkerd's architecture and core components

Control Plane

controller: Manages and configures proxy instances

destination: Service discovery and load balancing

identity: Certificate management for mTLS

Data Plane

linkerd-proxy: Ultra-lightweight proxy (written in Rust)

1 kubectl delete -f sample-app.yaml

2 kubectl delete -f sample-app-v2.yaml

3 kubectl delete -f virtual-service.yaml

4 kubectl delete -f destination-rule.yaml

https://linkerd.io/2.16/tasks/install/
https://linkerd.io/2.16/tasks/install/

Add-ons

Grafana: Metrics visualization

Prometheus: Metrics collection

Linkerd Features

Traffic management capabilities

Traffic Split:

Retries and Timeouts: Configured via annotations

Linkerd's observability and security features

Automatic mTLS:

Enabled by default for all meshed servicesb.

Metrics:

Access via CLI or Grafana dashboards

Live Traffic View:

Traffic Inspection:

Day 2-4: Hands-on Exercise

Deploying and Managing emojivoto with Linkerd

Sheet here Linkerd in a Minikube environment

Deploy the emojivoto sample application

This command downloads the emojivoto application manifest and applies it to your Kubernetes cluster. Verify the deployment:

Inject Linkerd into the application

1 apiVersion: split.smi-spec.io/v1alpha1

2 kind: TrafficSplit

3 metadata:

4 name: web-split

5 spec:

6 service: web-svc

7 backends:

8 - service: web-v1

9 weight: 500m

10 - service: web-v2

11 weight: 500m

1 linkerd viz stat deployment

1 linkerd viz top

1 linkerd tap deployment/your-deployment

1 curl -sL https://run.linkerd.io/emojivoto.yml | kubectl apply -f -

1 kubectl get pods -n emojivoto

https://vectorai.atlassian.net/wiki/x/A4AlMw
https://vectorai.atlassian.net/wiki/x/A4AlMw

This command retrieves all deployments in the emojivoto namespace, injects the Linkerd sidecar, and reapplies the configuration. Verify the

injection:

You should now see two containers per pod (the application container and the Linkerd proxy).

Observe traffic

Install smi

helm repo add linkerd-smi https://linkerd.github.io/linkerd-smi

helm install smi linkerd-smi/linkerd-smi

The Service Mesh Interface (SMI) is a standard specification for service meshes on Kubernetes, providing a set of common APIs to enable

interoperability between different service mesh implementations, allowing users to manage microservices communication without being tied

to a specific provider.

linkerd viz stat -n emojivoto deploy

This command shows real-time metrics for your deployments, including success rate, requests per second, and latency.

Visualize the service mesh

This opens the Linkerd dashboard in your default browser. Explore the various sections to see detailed metrics, topology, and live calls.

In a terminal

create port fowarding

kubectl -n emojivoto port-forward svc/web-svc 8080:80

Create traffic

for i in {1..20000}; do curl -s http://localhost:8080 ; done

Implement a traffic split for canary deployment

First, let's create a new version of the voting service:

1 kubectl get -n emojivoto deploy -o yaml | linkerd inject - | kubectl apply -f -

1 kubectl get pods -n emojivoto

1 linkerd viz dashboard

1 cat <<EOF | kubectl apply -f -

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: voting-v2

6 namespace: emojivoto

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: voting-svc

12 version: v2

13 template:

14 metadata:

15 labels:

16 app: voting-svc

17 version: v2

18 spec:

or (kubectl get deployments web -n emojivoto -o yaml > web-deployment.yaml ; sed -i 's/name: web/name: web-v2/' web-

deployment.yaml sed -i 's/image: emojivoto-web:v1/image: emojivoto-web:v2/' web-deployment.yaml ; kubectl apply -f

web-deployment.yaml ;rm web-deployment.yaml)

Now, create a TrafficSplit to gradually shift traffic:

This configuration sends 90% of traffic to the original version and 10% to the new version.

run kubectl get -n emojivoto deploy -o yaml | linkerd inject - | kubectl apply -f -

Observe the traffic split

You should see traffic being split between the two versions according to the weights specified in the TrafficSplit resource.

Gradually increase traffic to the new version

As you gain confidence in the new version, you can update the TrafficSplit to increase traffic to v2:

19 containers:

20 - name: voting-svc

21 image: buoyantio/emojivoto-voting-svc:v11

22 env:

23 - name: GRPC_PORT

24 value: "8080"

25 ports:

26 - containerPort: 8080

27 EOF

1 cat <<EOF | kubectl apply -f -

2 apiVersion: split.smi-spec.io/v1alpha2

3 kind: TrafficSplit

4 metadata:

5 name: voting-split

6 namespace: emojivoto

7 spec:

8 service: voting-svc

9 backends:

10 - service: voting

11 weight: 900

12 - service: voting-v2

13 weight: 100

14 EOF

1 linkerd viz stat -n emojivoto deploy voting voting-v2

1 cat <<EOF | kubectl apply -f -

2 apiVersion: split.smi-spec.io/v1alpha2

3 kind: TrafficSplit

4 metadata:

5 name: voting-split

6 namespace: emojivoto

7 spec:

8 service: voting-svc

9 backends:

10 - service: voting

11 weight: 500m

12 - service: voting-v2

13 weight: 500m

14 EOF

This updates the split to 50/50 between the two versions.

Monitor the canary deployment

Use the Linkerd dashboard or CLI to monitor the performance of both versions:

Keep an eye on success rates, latency, and request volumes to ensure the new version is performing as expected.

(In dashboard services → voting-svc will show the split and successes)

Conclusion

In this hands-on exercise, you've:

1. Deployed the emojivoto sample application

2. Injected Linkerd into the application

3. Observed traffic using Linkerd's CLI and dashboard

4. Implemented a canary deployment using TrafficSplit

5. Monitored the performance of both versions during the canary rollout

This exercise demonstrates Linkerd's key features for traffic management and observability, providing a practical introduction to service

mesh concepts and canary deployments.

Day 5: Service Mesh Comparison

Comparing Istio, Linkerd, and other service mesh solutions

Istio

Pros: Feature-rich, powerful traffic management

Cons: Complex, resource-intensive

Linkerd

Pros: Lightweight, simple, fast

Cons: Fewer advanced features

Consul Connect

Pros: Integrates well with HashiCorp ecosystem

Cons: Less mature as a full service mesh

NGINX Service Mesh

Pros: Builds on familiar NGINX technology

Cons: Relatively new, smaller community

When to choose one service mesh over another

Choose Istio for complex, feature-rich requirements

Choose Linkerd for simplicity and performance

Consider Consul Connect if already using HashiCorp tools

NGINX Service Mesh if familiar with NGINX and need basic mesh features

1 linkerd -n emojivoto stat deploy voting voting-v2

Week 5: Practical Project

Designing and implementing a microservices application

1. Create 3-4 simple microservices (e.g., frontend, backend, database)

2. Containerize each service with Docker

3. Create Kubernetes manifests for each service

Deploying the application using Helm

1. Create a Helm chart for the entire application

2. Use subchart for each microservice

3. Define configurable values in values.yaml

Implementing service mesh features

1. Choose either Istio or Linkerd based on your preference

2. Implement traffic routing between service versions

3. Set up mTLS between services

4. Configure observability (metrics, tracing)

Creating Python scripts for automation

1. Script to deploy/update the Helm release

2. Script to check service health and metrics

3. Script to perform canary deployments

This comprehensive deep dive covers the entire 4-week training plan, providing a solid foundation in Kubernetes, service mesh

technologies, and related tools. Remember to practice hands-on with each concept and refer to official documentation for the most up-to-

date information.

Additional Resources and Best Practices

Throughout the training, refer to official documentation for each technology

Join community forums or discussion groups for each technology

Consider working on a personal project that incorporates all these technologies

Explore real-world use cases and examples

Practice hands-on exercises daily

Tips for Successful Service Mesh Adoption

1. Start your service mesh journey early to allow your knowledge to grow organically as your microservices landscape evolves.

2. Avoid common design and implementation pitfalls by thoroughly understanding each technology.

3. Leverage your service mesh as the mission control of your multi-cloud microservices landscape.

4. Consider starting with a sample project to evaluate which service mesh solution you prefer before standardizing across all services.

5. Use service mesh as a 'bridge' while decomposing monolithic applications into microservices.

6. Implement service mesh incrementally, starting with the components you need most.

By following this training plan, you'll gain a solid foundation in service mesh concepts, Kubernetes, Helm, and Python, with practical

experience in both Istio and Linkerd. Remember to adapt the pace and depth of each topic based on your prior knowledge and learning

speed.

Tools

k9s : K9s: a Kubernetes Cluster Management Tool

jq : jq

kubectl : Install Tools

docker: Install

https://enix.io/en/blog/k9s/
https://enix.io/en/blog/k9s/
https://jqlang.github.io/jq/
https://jqlang.github.io/jq/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

